
Design and Performance Evaluation of Meghadoot
– A Hybrid Wireless Network Architecture†

B. Venkata Ramana, Devesh Agrawal, and C. Siva Ram Murthy
Department of Computer Science and Engineering

Indian Institute of Technology Madras 600036 India
{vramana, dvagr}@cse.iitm.ernet.in and murthy@iitm.ac.in

Abstract— This paper presents the design and evaluation
of Meghadoot – a hybrid wireless network architecture that
provides improved services, such as better connectivity among
the users, efficient routing, and access to the Internet. Meghadoot
architecture combines the advantages of both single-hop and
multi-hop wireless networks. Meghadoot is extremely useful (a) as
an alternative to existing wired or wireless last mile solutions, (b)
to establish a network in a residential complex or in a university
campus. The Meghadoot architecture has been implemented and
tested in both the NS2 simulator and in the Linux kernel. Both,
experimental and simulation results show an improved perfor-
mance for Meghadoot, in terms of reduction in control overhead
and increase in throughput over that of the existing approaches.

I. I NTRODUCTION

Over the past decade, the capabilities of wireless networks
have increased manifold. These capabilities include, nomadic
access, wider network coverage, increased bandwidths, and
multi-hop relaying. These networks can be divided into single-
hop and multi-hop wireless networks. Single-hop networks
(e.g., cellular networks) offer wider network coverage and
efficient routing. However, they are constrained by a high setup
and maintenance costs and a high setup time. In addition,
the available bandwidths are limited and expensive. Multi-
hop networks (e.g., ad hoc wireless networks), on the other
hand, are capable of operating without the support of any
fixed infrastructure and centralized administration, and provide
higher data rates compared to that of cellular networks. These
networks use multi-hop relaying for the transmissions between
the nodes that are not within the radio range of each other, thus
extending the network coverage. However, the lack of connec-
tivity to the Internet restricts the deployment of these networks.

This paper discusses a hybrid wireless network architecture
called Meghadoot, which combines the best features of both
single-hop (infrastructure based) and multi-hop (infrastruc-
ture less) networks, by using a centralized routing scheme
for efficient routing and multi-hop relaying for an extended
coverage. In Meghadoot, a specially designated node called
Infrastructure Node, which can typically be a workstation
computer, provides the centralized routing and other services
to the nodes in itsk-hop region called control zone, and also
handles the route requests originated beyondk-hops that are
destined to a node either ink-hop region or in the Internet.

†This work was supported by Microsoft Research University Relations,
India.

Meghadoot finds its applications in the following environ-
ments, where the nodes will be moving at a low mobility: (a)
as a distributed multi-hop wireless last mile solution, which
is an alternative to the existing wired or wireless last mile
solutions, (b) campus wide wireless connectivity for colleges
and universities, and (c) connectivity to residential complexes.
The advantages of such a system are (i) low cost of setting
up and maintaining of the network, (ii) minimal configuration
requirement, (iii) license-free bandwidth for communication
within the local community, (iv) an extended network cov-
erage, and (v) shared ownership of the network. Meghadoot
is especially useful as a distribution network in the rural
communication, since remote rural villages, with a clusterof
less than hundred houses, located about 40 to 50 kilometers
from the nearest town, are considered the most difficult places
to provide a communication infrastructure. The difficulties are
primarily due to (i) high cost of long-haul access link, (ii)cost
of maintaining the distribution network, (iii) unavailability of
power sources, and (iv) low traffic volume to recover the costs.

The rest of the paper is organized as follows. Section II
briefly discusses the related work. Section III presents the
architecture and related issues of Meghadoot. Section IV
provides the implementation details of Meghadoot. SectionV
presents the experimental and simulation results and analysis
of the results. Finally, Section VI summarizes our work.

II. RELATED WORK

The authors of [1], propose a scheme that uses Ad hoc
On-demand Distance Vector (AODV) and MobileIP proto-
cols, to provide the Internet connectivity to the nodes in an
ad hoc wireless network. The Foreign Agent (FA) periodically
floods its advertisements in the entire network; on hearing of
which, an unregistered node registries with the FA and obtains
the care-of-address. All the registered nodes maintain their
registration alive by periodically unicasting the registration
requests. When FA receives a Route Request (RReq) packet
and it sends a Route Reply (RRep) packet if it finds the
intended destination in the RReq packet does not exist in the
network. If a node is unable to receive a RRep from any node
other than FA RRep within a specified time interval, it assumes
that the intended destination is in the Internet, and proceeds
to use the route contained in the FA-RRep.

As the amount of control overhead due to flooding of
advertisements is extremely high, the mechanism in [2], which

is an extension of above work, restricts the flooding zone to
maximumk-hops, wherek is a predefine parameter. When a
node outside thek-hop zone wishes to access the Internet, it
floods FA-Solicitation message. On receipt of such message,
a registered node unicasts the message to its FA. Then the
FA unicasts a FA-Advt to the soliciting node, which enables
the node to register with it. In both [1] and [2], as every
RReq leads to a network wide flood of AODV RReq packets,
the routing overhead is also quite high. Because of this, the
proposed mechanism limits the scalability of the network.
Also, a high route setup time is incurred, especially, for
Internet destinations as the route returned in the FA-RRep is
not used immediately.

Another workSOHAN[3] aims at providing Internet access
for larger regions. However, it requires Forwarding Nodes
(FNs), which are fixed, high power, and dual radio nodes
that provide routing services to all their one hop nodes. A
separate channel is used to exchange routing messages across
the FNs and also with the access point which connects FNs
to the Internet. The specialized dual radio channel used in
the FNs necessiates the need for special hardware. Also, as
the FNs are fixed and serve only their one-hop nodes, a large
number of FNs are needed for effective network coverage,
hence increasing the overall cost of setting up the network.

Although the Meghadoot architecture might seem reminis-
cent of several hybrid wireless networks, such as [4]-[8], this
however is not the case. For a good survey of these networks,
please refer [9]. These hybrid wireless networks combine
cellular and ad hoc modes of communication. Meghadoot is
fundamentally different from hybrid wireless networks as it
does not employ any cellular networking technology, hence
it requires no specialized hardware such as expensive base
stations and cellular towers, no relay nodes, no long range
transmission radios, and no separate control channels, thereby
significantly decreasing its deployment cost.

III. M EGHADOOT ARCHITECTURE

Mobile Node (MN)

Gateway Node (GN)

�
�
�
�

Internet Gateway (IGW) Infrastructure Node (IN)

Wired/Wireless Link

ECZ Extended CZ i.e., CZ + all adjunct AZs

�
�
�
�

�
�
�
�
�
�
�
� CZCZ

AZ

AZ 10.9.2.0

10.9.1.0

Internet

AZ

AZ

10.8.1.0

10.8.2.0

10.8.0.0 10.9.0.0ECZ−2ECZ−1

Fig. 1. An illustration of Meghadoot architecture.

Meghadoot is a hybrid wireless network architecture that
is self organized and operates in a transparent manner to
the users. It uses multi-hop wireless relaying to extend the
network coverage as well as for forwarding data. The goal
of Meghadoot is to provide an external connectivity to its
users while minimizing the routing and other control over-
head. The Meghadoot architecture consists of two different
communication zones: Control Zone (CZ) and Ad hoc Zone
(AZ). The operations in CZ, such as routing, registration, and
other services, are controlled by a specially designated node
called Infrastructure Node (IN). A CZ is formed by the Mobile
Nodes (MNs) that are in the region ofk-hop neighborhood of
an IN and the MNs beyondk-hop neighborhood form one
or more AZs. Apart from MNs and INs, Meghadoot consists
of Gateway Nodes (GNs), which are MNs located atkth-hop
from the IN. The GNs are part of both the CZ and the AZ and
they hold the responsibility of interfacing MNs in the AZs to
those in the CZ. Figure 1 shows an illustration of Meghadoot
architecture. It contains two Extended Control Zones (ECZ)1

Here, all the MNs within 2-hop (k = 2) neighborhood of IN
form a CZ, and the remaining MNs form one or more AZs;
the GNs provide limited routing services to the nodes in AZ.

A. Registration of MNs

The primary goal of IN is to control the routing, Internet
access, and resource management in itsk-hop neighborhood
by maintaining information about the MNs in its CZ. For
this purpose, the IN periodically floods advertisements (IN-
Advt) in its k-hop neighborhood. These advertisements carry
the information, such as address of the originating IN, radius
of its CZ (i.e.,k), and number of hops traversed so far (i.e.,
hop count). Through these advertisements, each MN in CZ
learns its distance to the IN and next-hop node to reach the
IN. An MN uses the hop count information to choose the
nearest IN when it receives IN-Advts from more than one
IN. On receipt of IN-Advt, an unregistered MN registers with
the corresponding IN by sending a Registration Request (RG-
Req) message to the next-hop node towards the IN. While
forwarding a RG-Req packet, each MN on the path towards
the IN, appends its address to the partial route contained in
the RG-Req packet. Finally, when the IN receives a RG-Req
packet, it unicasts a Registration Acknowledgment (RG-Ack)
packet to the requesting MN along the reverse of the route
contained in the RG-Req packet.

Each registered MN periodically refreshes its registration
and also communicates its list of neighbors to the IN by means
of a Neighbor Update (NU) message. We discuss the formation
of the neighbor list later. The NU messages help the IN to keep
track of the approximate topology of its CZ. In order to reduce
the size of the NU message, an MN sends the incremental
update of its neighbor list to the IN. Note that the MNs beyond
thek-hop neighborhood do not get any IN-Advts and are said
to be in the AZ.

However, the MNs in the AZ may also register with the IN
in an on-demand manner as mentioned in [2]. In this case, the

1ECZ is the union of the CZ and all its adjacent AZs. All nodes inczSubnet
belong to the ECZ.

MN broadcasts a solicitation message in its AZ, on receiving
which the GN forwards it to its IN. The IN then unicasts
an IN-Advt to this interested MN. The MN may then register
with this IN in the manner outlined above. Note that registered
nodes in the AZ do not periodically send NU messages to their
respective IN’s. However, they need to re-register with their
INs before their registration expires.

The MNs can build their neighbor list by the following way.
Each MN periodically broadcasts a beacon called MNBeacon
in its one-hop neighborhood, by exchanging which, each MN
gets to know its one hop neighbors. This list of neighbors
is then communicated to the IN periodically in a NU packet,
thus enabling the IN to construct the entire topology of its CZ.
However, this periodic MNBeaconing increases the control
overhead. In order to reduce this overhead, as the neighboring
MNs can learn the presence of an MN by overhearing MN’s
transmissions, an MN sends an explicit MNBeacon only when
it has not transmitted any data or control packets for the
duration of the MNBeacon interval.

B. Addressing

In Meghadoot, every CZ is associated with a unique subnet
address (czSubnet) for which the IN of the CZ is the ingress
router. The IN assigns unique addresses to the MNs in its
CZ at the time of their registration. For each of its adjacent
AZ, the IN assigns a unique subnet address which is a part
of its czSubnet and also keeps track of at least one GN,
called inchargeGN. It stores the subnet address of each AZ
(azSubnet) and its corresponding inchargeGN, in a table called
azTable. Each inchargeGN periodically broadcasts its assigned
subnet address, to enable MNs in its AZ to obtain a unique
IP address. A scheme involving random address configuration
and duplicate address detection similar to the one found in
[1] is employed to assign unique addresses to AZ MNs. We
employ a scheme similar to the MobileIP [10], to do address
assignment for MNs that originally belong to one CZ and have
moved to another CZ. Note that we only provide mobility
freedom to CZ MNs. Each registered MN keeps track of the
following information:

• HIN: The Home IN (HIN) or the IN of the CZ to which
this MN originally belongs to, initially set to null.

• curIN: The IN of the new CZ this MN has moved into
and seeks to register with.

• mnAddr: The current address of the MN, which was
assigned to it by its HIN, initially set to null.

Each RG-Req sent by the MN contains the above infor-
mation in the fields RG-Req.HIN, RG-Req.mnAddr, RG-
Req.openTCPConn. The IN classifies its registered MNs into
three types:homeMNs are those that have registered with it
and are currently in its CZ,outsideMNs are those that have
registered with it but are currently in some other CZ, and
foreignMNs are those that originally belong to some other CZ
but have moved into its CZ. The pseudo code for registering
an MN at the IN is given below.

1: if (RG-Req.mnAddr= null) OR (Re-Req.mnAddr does not
belong toczSubnet AND RG-Req.HIN= null) then

2: /* Acquiring a new address */

3: Let ipAddress= new IP Address belongs toczSubnet

4: RegisteripAddressashome node
5: SendipAddressin RG-Ack to this MN
6: Update the DNS tables
7: else if (RG-Req.mnAddrdoes not belong toczSubnet)

AND (RG-Req.HINis not this IN) then
8: This is aforeign node,
9: if (RG-Req.openTCPConn = false) then

10: Inform HIN of this MN and upon getting ack
from it, register this node asforeign node.

11: else
12: Perform steps from 2 to 6 and inform old HIN

of this MN about this address change.
13: end if
14: else if (RG-Req.HINis this IN but not theRG-Req.curIN)

then
15: An outside MN that has come back to its HIN. So,

re-register this node ashomenode, and forget its old
IN, if any.

16: else
17: This is a registered node, so refresh its registration.
18: end if
Note that each IN keeps track of current foreign IN for each
of its outsideMN, and the HINs for each of itsforeign MNs.

C. Name Resolution Service

Domain Name Service (DNS) facility is provided only for
the registered MNs in the Extended Control Zone (ECZ).
Each MN has a unique name, that must be associated with
its current address. Note that when an MN moves into a
new CZ, its address may change as the MN is allowed to
acquire a new address when it moves into a new CZ with no
active TCP connections. A Meghadoot network is served by
a master name-server, which devolves the name resolution of
the constituent CZs to their respective IN’s. During registration
the MN configures its current IN as its primary name-server.
The IN updates the current address of the MN in the Master
name-server whenever the MN acquires a new address.

D. Routing Mechanism in Meghadoot

We employ a centralized source routing based protocol for
routing in the CZ, which is called asMeghadoot Routing
Protocol (MRP). The optimizations mentioned in Section III-
E reduce the network overhead attributed to routing. The IN
maintains the approximate topology of its CZ as mentioned
in III-A and handles the routing for MNs in its ECZ. Each
inchargeGN is responsible for forwarding data across its AZ
to the CZ it is a part of. Route discovery can be understood
by considering the following cases:
1. Source and destination belong to the same ECZ:This
case can be further decomposed into four cases, each of which
is illustrated in Fig. 2:
a) Both source and destination are in the same CZ:Since
the IN maintains the topology of its CZ, an MN only needs to
ask the IN for a route to the destination MN. Hence, it unicasts
(not broadcasts) a RReq to the IN. The IN then replies with a

�
�
�
�

�
�
�
�

B−RREQ − Broadcast Route Requent

U−RREQ − Unicast Route Requent

U−RREP − Unicast Route Reply

− Buffer data until receiving RREP

�
�
�

�
�
�

CZ CZ CZ
mn2 in

CZ
IN inmn1 in

U−RREQ

U−RREPData

U−RREQ

U−RREPData

B−RREQ

U−RREP

Data

B−RREQ

U−RREQ

U−RREPU−RREP

Data

Data

Case 1.a

Case 1.d

Case 1.c

mn4 in mn3 in
AZAZ

gn1 in

B−RREQ

U−RREP

Data

Case 1.b

From another ECZ
or the Internet

or the Internet

To another ECZ

Fig. 2. Routing among MNs in the Extended CZ.

corresponding RRep if it is able to compute a route from the
source MN to the destination MN.
b) Both source and destination are in the same AZ:There
is no topology information of the AZ since there is no IN
associated with it. Hence, we need to employ a pure ad hoc
routing protocol in the AZ. Essentially the source floods the
RReq, to which the destination replies with a unicasted RRep
to the source.
c) Source is in the AZ and the destination is in the CZ:
In this case the GN must help to transfer the RReq from the
AZ to the CZ. When a flooded AZ RReq reaches a GN, the
GN unicasts it to its IN if the destination does not belong to
its azSubnet. The IN, then computes a route from the GN to
the destination and returns the requesting MN (in the AZ) a
route from the source to the GN to the destination. Thus GNs
help to route traffic across the CZ and the AZ.
d) Source is in the CZ and the destination is in the AZ:
Similar to the previous case, the GN helps in transferring RReq
from the CZ to the AZ. On getting a RReq, the IN determines
the AZ in which the destination lies and finds the inchargeGN
for that AZ. A RRep containing the route from the source
to the inchargeGN is sent. The packets are source routed to
the inchargeGN, which on receiving them does an AZ route
discovery for the destination if required, buffering the data
packets in the meanwhile.
2. Source and the destination belong to different ECZ:
This process can be conceptually viewed as finding the route
from the source to its IN, from the source IN to the destination
IN (i.e., the IN in whose ECZ destination lies), and from the
destination IN to the destination. Note that routing from one IN
to another is taken care of by the routing protocol running on
the backbone network (e.g., OSPF, RIP). We can find a route
from a node to its IN by setting the destination to be the IN in
case 1. Since each node must be a part of some ECZ, a route
between any two nodes can be found from the above cases.

E. Optimizations

In order to decrease the routing overhead, the following
optimizations have been incorporated. Note that most of these
optimizations are similar to the ones mentioned in [11].

1) LinkGraph: We use a link cache as mentioned inAp-
pendix Aof [11] to enhance an MN’s knowledge of its
local topology.

2) NU aggregation: An MN can piggyback its own NU
message as it forwards NU messages of other MNs.

3) Caching overheard routes: An MN caches the routes it
overhears in the source routed data packets.

IV. PROTOTYPE IMPLEMENTATION OF MEGHADOOT

ARCHITECTURE

The Meghadoot architecture has been implemented as a
loadable Linux kernel module (LKM). We use the netfilter
framework [12] to register handlers for each netfilter hook.The
netfilter hooks allow us to capture packets from both the IP and
the MAC layers. These message handlers implement the entire
functionality of the Meghadoot architecture. Kernel timers [13]
are used for bookkeeping and for periodic tasks. The current
implementation adds a custom header to all packets being
transmitted in the Meghadoot network. Each MN was put
into promiscuous mode for better neighbor discovery as we
could not find a way to know of the RTS/CTS exchanges by
our 802.11 interface. For further details on the Meghadoot
prototype implementation, interested readers can refer to[14].

V. EXPERIMENTAL AND SIMULATION RESULTS

A. Experimental Results

Our experimental setup consisted of two Linux PCs and
four laptops each fitted withUS Robotics (USR012415)802.11
cards withprism chip sets. We measured the TCP throughput
in the CZ and AZ for varying hop lengths. The throughput is
measured by transferring files using FTP. We also have a script
running to randomlyping known and unknown destinations,
in order to generate a moderate background routing overhead.
As our experimental setup had only six nodes, we could not
test our prototype more extensively.

Figure 6 shows the experimental results of average TCP
throughput in CZ and AZ for different hop lengths between the
source and destination MNs. The average TCP throughput is
obtained by averaging the individual throughput of severalruns
of an FTP session that transmits files of different sizes. Figures
3, 4, and 5, show variations in throughput with respect to file
sizes for different hop lengths. In these figures, we observethat
the throughput in CZ is significantly higher than that of AZ
for increasing hop lengths; also as expected the throughput
decreases with increasing hop lengths for both CZ and AZ
flows. The reason for better performance in CZ as compared
to AZ is that theRReq’s generated by theping script are
broadcasted in case of AZ as compared to in CZ where they
are unicasted to the IN. The higher routing overhead in the AZ
increases contention and hence the TCP throughput suffers.
This effect is more pronounced as the hop length between the
source and the destination is increased.

B. Simulation Results

We have carried out extensive simulations usingns-2.28

[15] for measuring the performance Meghadoot. As MRP is
the core part of Meghadoot, we evaluate MRP and compared
our results with that of Dynamic Source Routing (DSR)
protocol. The various parameters used in our simulation are
listed in Table I. The AZ performance evaluation is not
required, as any existing ad hoc routing scheme could be

 500

 600

 700

 800

 900

 1000

 500 1000 1500 2000 2500

Th
ro

ug
hp

ut
 (K

bp
s)

File Size (KB)

1-hop CZ Throughput
1-hop AZ Throughput

2-hop CZ Throughput
2-hop AZ Throughput

Fig. 3. Throughput vs File Sizes for Hop Lengths 1 & 2.

 0

 100

 200

 300

 400

 500

 500 1000 1500 2000 2500

Th
ro

ug
hp

ut
 (K

bp
s)

Size (KB)

3-hop CZ Throughput
3-hop AZ Throughput

4-hop CZ Throughput
4-hop AZ Throughput

Fig. 4. Throughput vs File Sizes for Hop Lengths 3 & 4.

 0

 100

 200

 300

 400

 500

 500 1000 1500 2000 2500

Th
ro

ug
hp

ut
 (K

bp
s)

Size (KB)

5-hop CZ Throughput
5-hop AZ Throughput

Fig. 5. Throughput vs File Sizes for Hop Length 5.

TABLE I

SIMULATION PARAMETERS USED IN ns-2 SIMULATION FRAMEWORK

Description Value
Simulation area/Node placement 1200m×1200m/Random placement
Number of INs/Number of MNs 1 IN / 74 CZ MNs
Location of the IN Center of the simulation area
Transmission range of each MN 250m
MAC/Application protocol 802.11b with 2Mbps/CBR
CBR traffic rate/Packet size 5 packet per second/512 bytes
Mobility model Random way-point with constant

Mobility of 1m/s and zero pause time
IN-Advt/MNBeacon/NU interval 10/8/10 in seconds
Number of different seeds 25 seeds with 95%confidence level

employed in it. Hence, we evaluate the performance of only
CZ. Unless otherwise stated, we use the same setup for all
our simulation studies. The metrics used for comparison are
Packet Delivery ratio (PDR), Signaling Overhead (SO)2.

Several simulation studies are carried out to evaluate the
performance of MRP versus that of DSR. The first two studies
measure the variation in the metrics with increasing traffic, the
third one measures the variation with increasing mobility,and
finally, the fourth one measures the variations with increasing
CZ radius. We consider two classes of traffic patterns. Since
Meghadoot was primarily designed for Internet connectivity,
the first traffic pattern class, henceforth referred to as the
Internet traffic pattern, has 80% of all flows destined to
the Internet and the remaining 20% being between randomly
chosen source and destination pairs. Since Internet traffichas
to go through the IN, we approximate Internet traffic with
traffic to the IN. The second traffic pattern class, henceforth,
is referred as theRandom traffic pattern.

The MRP control overhead can be divided into two parts.
The fixed part concerns the proactive maintenance of the
updated topology at the IN, whereas the variable part con-
sists of the route request-reply exchanges. The variable part
increases with increasing number of flows, number of nodes,
and mobility. However, it increases only slightly as the RReqs
are unicasted to the IN. On the other hand, the DSR control
overhead increases at a much larger rate with increasing
number of flows and mobility, because the RReqs are flooded
in it. Due to this reason, MRP achieves a better PDR than
DSR with a much lesser overhead.

Internet traffic pattern: In this study, we evaluate the
performance of MRP versus DSR, under theInternet traffic
pattern class, when the number of flows is increased from 10

2PDR = The total number of data packets received by all the destinations
over the total number of data packets sent by all the sources and SO = The
ratio of the total number of control packets exchanged in thenetwork over
the total number of data packets exchanged.

to 16. Figs. 7 and 8 illustrate the PDR and the SO, respectively.
We observe from Fig. 8 that the SO of MRP is much lower
than that of DSR. The high control overhead leads to an
increased contention, particularly around the IN, hence the
PDR of DSR falls sharply with increasing number of flows.
Note that Fig. 8 might seem contradictory to our claim that
the SO increases with increasing number of flows. It can be
explained as follows. Since a large fraction of the traffic is
towards the IN, nodes along the paths to the IN cache the
route to it; hence, obviating the need for a RReq to be done
by these nodes. Since RReqs are flooded in the case of the
DSR, we see that the SO of DSR (refer Fig. 8) falls even
sharply with increasing number of flows.

Random traffic pattern: In this study, we evaluate the
performance of MRP versus DSR, under theRandom traffic
pattern class, when the number of flows is increased from
10 to 16. Figs. 9 and 10 illustrate the PDR and the SO,
respectively. Similar to the previous study, the SO of MRP
is much lower than that of DSR, hence leading to a higher
PDR because of the reduced contention. Note that unlike
the previous study, the SO does not decrease with increasing
number of flows, this is because the likelihood of caching
decreases when most of the flows are to different destinations.
The PDR falls with increasing number of flows due to the
increased contention caused by more traffic.

Evaluation with increasing mobility: Here, we evaluate
the performance of MRP versus DSR with increasing mobility
under theInternet traffic pattern class. The number of flows is
fixed as 10 and the mobility is varied from 1 m/s to 5 m/s. Note
that, as most of the traffic in rural settings is pedestrian, we
specifically tuned Meghadoot for low mobility scenarios. Itcan
be observed from Fig. 11 that MRP achieves almost the same
PDR as DSR. Fig. 12 shows that MRP has a lesser SO than
that of DSR. The sudden increase in the SO of MRP at around
3 m/s is because the beaconing rates of MRP (given in Table
I), work well till about 3 m/s, after which more link-breaks
start happening, leading to an increased control overhead.Note
that the SO of DSR rises even more sharply with increasing
mobility as each link-break triggers a RReq flood.

Evaluation with increasing CZ radius: In this study, we
evaluate the performance of MRP versus DSR with increasing
CZ radius under theRandom traffic pattern class. The number
of flows is fixed as 10, and the CZ radius is varied from 3 to 6.
The number of nodes increases along with the CZ radius. We
observe from Fig. 13 that the SO of DSR rises at a much higher
rate than MRP. The DSR’s SO is primarily due to the flooding
of RReqs, which is proportional to the number of nodes and to

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 2 3 4 5

Av
g

Th
ro

ug
hp

ut
 (K

bp
s)

Num of hops

Avg CZ Throughput
Avg AZ Throughput

Fig. 6. Average TCP Throughput in CZ and AZ vs Hop
Length.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 11 12 13 14 15 16

Pa
ck

et
 D

el
iv

er
y

R
at

io

Number of Flows

DSR
MRP

Fig. 7. Internet traffic pattern: PDR vs Number of flows.

0.25

0.3

0.35

0.4

0.45

0.5

10 11 12 13 14 15 16

Si
gn

al
in

g
O

ve
rh

ea
d

Number of Flows

DSR
MRP

Fig. 8. Internet traffic pattern: SO vs Number of flows.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 11 12 13 14 15 16

Pa
ck

et
 D

el
iv

er
y

R
at

io

Number of Flows

DSR
MRP

Fig. 9. Random traffic pattern: PDR vs Number of flows.

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

10 11 12 13 14 15 16

Si
gn

al
in

g
O

ve
rh

ea
d

Number of Flows

DSR
MRP

Fig. 10. Random traffic pattern: SO vs Number of flows.

0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4 4.5 5

Pa
ck

et
 D

el
iv

er
y

R
at

io

Mobility (m/s)

DSR
MRP

Fig. 11. Internet traffic pattern: PDR vs Mobility.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1 1.5 2 2.5 3 3.5 4 4.5 5

Si
gn

al
in

g
O

ve
rh

ea
d

Mobility (m/s)

DSR
MRP

Fig. 12. Internet traffic pattern: SO vs Mobility.

0

0.5

1

1.5

2

2.5

3

3 4 5 6

Si
gn

al
lin

g
 O

ve
rh

ea
d

CZ radius

DSR
MRP

Fig. 13. Random traffic pattern: SO vs CZ radius.

0

0.2

0.4

0.6

0.8

1

3 4 5 6

Pa
ck

et
 D

el
iv

er
y

 R
at

io

CZ radius

DSR
MRP

Fig. 14. Random traffic pattern: PDR vs CZ radius.

the number of flows. Whereas, the MRP’s SO is proportional
only to the number of nodes in the network. Hence, for a
given number of flows and with increasing number of nodes,
the overhead of DSR rises at a greater rate than that of MRP.
Therefore, we notice in Fig. 14, that the higher rate of increase
of the DSR’s SO leads to a sharper fall in the DSR’s PDR,
as compared to MRP, with the increasing CZ radius. Similar
behavior is also observed for theInternet traffic pattern.

VI. SUMMARY

In this paper, we described the design Meghadoot – a hybrid
wireless network architecture and evaluated the routing proto-
col (MRP) used in it by means of simulation and experimental
testing. These results confirm that Meghadoot performs better,
in terms of higher packet delivery ratio and lower signaling
overhead over that of the existing approaches. Meghadoot is
especially suited to be an alternative to existing last mile
solutions for establishing communication network among rural
communities, and to set up low cost minimum configuration
Internet connected networks in residential areas and university
campuses.

Our future work consists of studying the performance of
Meghadoot against the one in [2] which proposes a mechanism
to provide the Internet connectivity to the users of ad hoc
wireless networks, and a hierarchical routing protocol, such as
Optimal Link State Routing (OLSR) protocol. We shall also
look into the aspects of load balancing across control zones,
security, and resource management in Meghadoot.

REFERENCES

[1] Y. Sun, M.B. Elizabeth, and C. E. Perkins, “Internet Connectivity for Ad
hoc Mobile Networks,”Intl. Journal of Wireless Information Networks,
vol. 9, no. 2, pp. 75-88, Apr 2002.

[2] P. Ratanchandani and R. Kravets, “A Hybrid Approach to Internet
Connectivity for Mobile Ad Hoc Networks,”in Proc. IEEE WCNC,
vol. 3, pp. 1522-1527, Mar 2003.

[3] S. Ganu, S. Zhao, L. Raju, B. Anepu, I. Seskar, and D. Raychaudhuri,
“Architecture and Prototyping of an 802.11-based Self-organizing Hier-
archical Ad Hoc Wireless Network (SOHAN),”in Proc. IEEE PIMRC,
vol. 2, pp. 880-884, Sep 2004.

[4] H. Luo, R. Ramjee, P. Sinha, Li (Erran) Li, S. Lu, “UCAN: A Unified
Cellular and Ad-hoc Network Architecture,”in Proc. ACM Mobicom,
pp. 3.0-367, Sep 2003.

[5] H. Wu, C. Qiao, S. De, and O. Tonguz, “Integrated Cellularand Ad
hoc Relaying Systems: iCAR,”in IEEE Journal on Selected Areas in
Communications, vol. 19, no. 10, pp. 2105-2115, Oct 2001.

[6] H. Hsieh and R. Sivakumar, “On Using Peer-to-peer Communication
in Cellular Wireless Data Networks,”in IEEE Transactions on Mobile
Computing, vol. 3, no. 1, pp. 57-72, Jan 2004.

[7] H. Hsieh and R. Sivakumar, “On Using the Ad-hoc Network Model in
Cellular Packet Data Networks,”in Proc. MobiHoc, pp. 36-47, Jun 2002.

[8] H. Hsieh and R. Sivakumar, “A Hybrid Network Model for Wireless
Packet Data Networks,”in Proc. Globecom, pp. 961-966, Nov 2002.

[9] C. Siva Ram Murthy and B. S. ManojAd Hoc Wireless Networks,
Architectures and Protocols, Prentice Hall, New Jersey, 2004.

[10] C. Perkins, “IP Mobility Support,”RFC 2002, Oct 1996.
[11] D. B. Johnson, D. A. Maltz, and Y. Hu, “The Dynamic SourceRouting

Protocol for Mobile Ad hoc Networks,”Internet Draft Version 10, 2004.
[12] R. Russell and H. Welt, “Linux netfilter Hacking HOW-TO,”

http://www.netfilter.org, Jul 2002.
[13] Jonathan Corbet, Alessandro Rubini, and Greg Kroah Hartman, Linux

Device Drivers, O’Reilly Publishers, 2005.
[14] V. Kumar, “A Kernel Implementation of the Meghadoot Architecture,”

Tech Report, Indian Institute of Technology Madras, May 2005.
[15] The Network Simulator - NS2http://www.isi.edu/nsnam/ns.

